∵(3,−29) lies on a2x2+b2y2=1⇒a29+4b281=1 …… (1) Equation of the tangent at (3,−29) is a23x+b2−29y=1
& given equation of the tangent is: x−2y=12⇒12x+6−y=1
On comparing these equations: 3a2=12⇒a2=36⇒a=6 92b2=6⇒b2=27⇒b=33
Therefore, the length of latus rectum =a2b2=62×27=9