We have, x2−xy+y2+3x+3y−2=0… (i)
and x+2y=k⇒kx+2y=1
By homogeneous of Eq. (i), we get x2−xy+y2+3x(kx+2y) +3y(kx+2y)−2(kx+2y)2=0 ⇒k2x2−k2xy+k2y2+3kx2+6kxy+3kxy+6ky2 −2x2−8xy−8y2=0 ⇒x2(k2+3k−2)−(k2−9k+8) xy+(k2+6k−8)y2=0
Since, ∠AOB=90∘ ∴k2+3k−2+k2+6k−8=0 ⇒2k2+9k−10=0