The equation of the line is y−3=0−53+2(x−0),
i.e., x+y−3=0 y=x+1c ⇒dxdy=(x+1)2−c
Let the line touches the curve at (α,β). ⇒α+β−3=0,(dxdy)α,β=(α+1)2−c=−1
and β=α+1c ⇒(c/β)2c=1
or β2=c
or (3−α)2=c=(α+1)2 ⇒3−α=±(α+1)
or 3−α=α+1 ⇒α=1.
So, c=(1+1)2=4 ⇒8c=0.5