Q.
If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of the sides of this triangle is :
a<b<c are in A.P. ∠C=2∠A (Given) ⇒ sinC = sin 2 A ⇒ sin C = 2 sin A. cos A ⇒sinAsinC=2cosA ⇒ac=22bcb2+c2−a2
Put a=b−λ,c=b+λ,λ>0 ⇒λ=5b ⇒a=b−5b=54b,c=b+5b=56b ⇒ required ratio = 4:5:6