Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the least positive value of p for which |6 x+25 p|(4+x2) ≥ 50 x ∀ x ∈ R is ((a/b)), where a, b ∈ N, then find the least value of (b-5 a).
Q. If the least positive value of
p
for which
∣6
x
+
25
p
∣
(
4
+
x
2
)
≥
50
x
∀
x
∈
R
is
(
b
a
)
, where
a
,
b
∈
N
, then find the least value of
(
b
−
5
a
)
.
63
122
Application of Derivatives
Report Error
Answer:
5
Solution:
∣6
x
+
25
p
∣
≥
4
+
x
2
50
x
∣
∣
25
3
x
+
2
p
∣
∣
≥
4
+
x
2
x
f
(
x
)
=
4
+
x
2
x
⇒
f
′
(
x
)
=
(
4
+
x
2
)
2
(
4
+
x
2
)
1
−
x
⋅
2
x
=
(
4
+
x
2
)
2
4
−
x
2
m
A
P
=
h
+
6
25
p
k
−
0
=
(
4
+
h
2
)
2
4
−
h
2
=
25
3
(
4
+
h
2
)
4
−
h
2
=
25
3
100
−
25
h
2
=
3
(
16
+
8
h
2
+
h
4
)
3
h
4
+
49
h
2
−
52
=
0
(
3
h
2
+
52
)
(
h
2
−
1
)
=
0
⇒
h
=
±
1
∴
h
=
1
;
k
=
1/5
Now
h
+
6
25
p
k
=
25
3
⇒
1
+
6
25
p
5
1
=
25
3
⇒
5
=
3
+
2
25
p
b
−
5
a
=
25
−
20
=
5.
⇒
p
=
25
4
≡
b
a