Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the largest possible coefficient of x2016 in (1+x3 n+x504)10 (where n ≤ 25, n ∈ N ) is c, then the value of n + c is
Q. If the largest possible coefficient of
x
2016
in
(
1
+
x
3
n
+
x
504
)
10
(where
n
≤
25
,
n
∈
N
) is
c
, then the value of
n
+
c
is
251
105
Binomial Theorem
Report Error
A
10
C
4
+
4
P
4
B
10
C
3
+
6
P
6
C
11
C
4
+
6
P
6
D
11
C
4
+
4
P
4
Solution:
10
C
0
(
1
+
x
3
n
)
10
+
10
C
1
(
1
+
x
3
n
)
9
⋅
x
504
+
10
C
2
(
1
+
x
3
n
)
8
⋅
x
1008
+
10
C
3
(
1
+
x
3
n
)
7
x
1512
+
10
C
4
(
1
+
x
3
n
)
6
x
2016
+
……
Terms containing
x
2016
=
10
C
3
⋅
7
C
r
x
3
n
r
+
1512
+
10
C
4
⋅
6
C
0
⋅
x
2016
3
n
r
=
504
⇒
n
r
=
168
n
=
r
168
,
r
=
1
,
2
,
3
,
……
6
,
7
n
=
24
,
r
=
7
⇒
Coefficient
=
10
C
3
+
10
C
4
=
11
C
4
⇒
n
+
c
=
11
C
4
+
24
=
11
C
4
+
4
P
4