Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral I= displaystyle ∫ (x5/√1 + x3)dx =K√x3 + 1(x3 - 2)+C, (where, C is the constant of integration), then the value of 9K is equal to
Q. If the integral
I
=
∫
1
+
x
3
x
5
d
x
=
K
x
3
+
1
(
x
3
−
2
)
+
C
,
(where,
C
is the constant of integration), then the value of
9
K
is equal to
1466
205
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
4
0%
B
2
33%
C
6
67%
D
10
0%
Solution:
Let
1
+
x
3
=
t
2
⇒
3
x
2
d
x
=
2
t
d
t
⇒
I
=
∫
3
t
(
t
2
−
1
)
2
t
d
t
⇒
I
=
3
2
∫
(
t
2
−
1
)
d
t
=
9
2
t
3
−
3
2
t
+
C
=
9
2
t
(
t
2
−
3
)
+
C
=
9
2
1
+
x
3
(
x
3
−
2
)
+
C
∴
K
=
9
2
⇒
9
K
=
2