Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral I= displaystyle ∫ (2 x2/4 + x2)dx= 2x-f(x)+c , where f(2)=π , then the minimum value of y=f(x)∀ x∈ [- 2,2] is (where, c is the constant of integration)
Q. If the integral
I
=
∫
4
+
x
2
2
x
2
d
x
=
2
x
−
f
(
x
)
+
c
, where
f
(
2
)
=
π
, then the minimum value of
y
=
f
(
x
)
∀
x
∈
[
−
2
,
2
]
is (where,
c
is the constant of integration)
1814
227
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
0
B
−
π
C
2
π
D
−
4
π
Solution:
I
=
2
∫
(
x
2
+
4
x
2
+
4
−
4
)
d
x
=
2
∫
(
1
−
x
2
+
4
4
)
d
x
=
2
(
x
−
2
4
tan
−
1
(
2
x
)
)
+
c
=
2
x
−
4
tan
−
1
(
2
x
)
+
c
∴
f
(
x
)
=
4
tan
−
1
(
2
x
)
So,
min
(
f
(
x
))
=
4
tan
−
1
(
−
1
)
=
−
π