Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral I=∫ limits 0π (( sec)- 1 ( sec â¡ x)/1 + ( tan)8 â¡ x)dx,∀ x≠ (π /2), then the value of [I] is equal to (where [⋅ ] is the greatest integer function)
Q. If the integral
I
=
0
∫
π
1
+
(
t
a
n
)
8
x
(
s
e
c
)
−
1
(
s
e
c
x
)
d
x
,
∀
x
=
2
π
,
then the value of
[
I
]
is equal to (where
[
⋅
]
is the greatest integer function)
24
176
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
2
Solution:
Applying
(
a
+
b
−
x
)
and adding, we get,
⇒
2
I
=
π
0
∫
π
1
+
t
a
n
8
x
d
x
⇒
2
I
=
π
0
∫
π
/2
(
1
+
t
a
n
8
x
1
+
1
+
t
a
n
8
(
π
−
x
)
1
)
d
x
⇒
2
I
=
2
π
0
∫
2
π
1
+
t
a
n
8
x
d
x
=
2
π
0
∫
2
π
c
o
s
8
x
+
s
i
n
8
x
c
o
s
8
x
⇒
I
=
π
0
∫
2
π
c
o
s
8
x
+
s
i
n
8
x
c
o
s
8
x
Applying
(
a
+
b
−
x
)
and adding,
2
I
=
π
0
∫
2
π
s
i
n
8
x
+
c
o
s
8
x
s
i
n
8
x
+
c
o
s
8
x
d
x
⇒
2
I
=
π
0
∫
(
π
)
/2
1
d
x
=
π
(
2
π
)
⇒
I
=
4
π
2
⇒
[
I
]
=
2