Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral displaystyle ∫ (ln x/x3)dx= (f (x)/4 x2)+C , where f(e)=-3 and C is the constant of integration, then the value of f(e2) is equal to
Q. If the integral
∫
x
3
l
n
x
d
x
=
4
x
2
f
(
x
)
+
C
, where
f
(
e
)
=
−
3
and
C
is the constant of integration, then the value of
f
(
e
2
)
is equal to
1991
214
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
3
B
−
4
C
−
5
D
5
Solution:
∫
I
l
n
x
II
x
3
1
d
x
=
(
l
n
x
)
(
2
x
2
−
1
)
−
∫
x
1
(
2
x
2
−
1
)
d
x
(Using integration by parts)
=
−
2
x
2
l
n
x
+
2
1
(
−
2
x
−
2
)
+
C
=
−
4
x
2
1
(
2
l
n
x
+
1
)
+
C
⇒
f
(
x
)
=
−
2
l
n
x
−
1
∴
f
(
e
2
)
=
−
2
l
n
(
e
2
)
−
1
=
−
4
−
1
=
−
5