Q.
If the integral I=∫esinx(cosx⋅x2+2x)dx=ef(x)g(x)+C (where, C is the constant of integration), then the number of solution(s) of f(x)=g(x) is/are
2388
191
NTA AbhyasNTA Abhyas 2020Integrals
Report Error
Solution:
As, I=∫ef(x)(f′(x)g(x)+g′(x))dx=ef(x)g(x)+C
Thus, ∫esinx(cosx⋅x2+2x)dx=esinx⋅x2+C
i.e. f(x)=sinx&g(x)=x2
Thus, ∫esinx(cosx⋅x2+2x)dx=esinx⋅x2+C
i.e. f(x)=sinx &g(x)=x2
Which intersect at ‘2’ points.