Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the integral Î= displaystyle ∫ (d x/x10 + x)= λ ln((x9/1 + xμ ))+C, (where, C is the constant of integration) then the value of (1/λ )+μ is equal to
Q. If the integral
I
=
∫
x
10
+
x
d
x
=
λ
l
n
(
1
+
x
μ
x
9
)
+
C
,
(where,
C
is the constant of integration) then the value of
λ
1
+
μ
is equal to
1653
234
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
81
22%
B
9
82
27%
C
18
38%
D
8
13%
Solution:
I
=
∫
1
+
x
−
9
x
−
10
d
x
Put
1
+
x
−
9
=
t
⇒
−
9
x
−
10
d
x
=
d
t
⇒
I
=
∫
(
−
9
)
t
d
t
=
9
−
1
l
n
t
+
C
=
9
−
1
l
n
(
1
+
x
−
9
)
+
C
=
9
1
l
n
(
1
+
x
9
x
9
)
+
C
⇒
λ
=
9
1
,
μ
=
9
∴
λ
1
+
μ
=
9
+
9
=
18