Q.
If the inequality x2+ax+a2+6a<0 is satisfied for all x∈(1,2), then the sum of all the integral values of a must be equal to
3053
190
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
f(x)=x2+ax+a2+6a f(1)<0,f(2)<0 and D>0 f(1)<0⇒a2+7a+1<0⇒a∈(2−7−35,2−7+35) f(2)<0⇒a2+8a+4<0⇒a∈(−4−23,−4+23)
and D>0⇒a2−4×1×(a2+6a)>0 ⇒−3a2−24a>0⇒a2+8a<0⇒a∈(−8,0)
Taking intersection, we get, a∈(2−7−35,−4+23)
Integral values of a=−6,−5,−4,−3,−2,−1
Hence, the sum of values is −21