Let z=x+iy ∴iz+12z+1=i(x+iy)+12(x+iy)+1=(−y+1)+ix2x+1+iy =[(−y+1)+ix][(−y+1)−ix][(2x+1)+iy][(−y+1)−ix] =(−y+1)2+x2(2x+1)(−y+1)−(2x+1)xi+y(−y+1)j+xy =(−y+1)2+x2(2x+1)(−y+1)+xy+(−y2+y−2x2−x)i
It is given that imaginary part of iz+12z+1=−2 ∴(−y+1)2+x2−y2+y−2x2−x=−2 ⇒−y2+y−2x2−x=−2(−y+1)2−2x2 ⇒−y2+y−x=−2y2−2+4y ⇒y2−3y−x+2=0
which represent the equations of parabola.