we have x=t5−5t3−20t+7
and, y=4t3−3t2−18t+3 ∴dtdx=5t4−15t2−20
and dtdy=12t2−6t−18 ⇒dtdx=5(t2−4)(t2+1) and ⇒dtdy=6(2t−3)(t+1) ⇒dxdy=dtdxdtdy=5(t2−4)(t2+1)6(2t−3)(t+1)
Now, dxdy=0 ⇒t=23,−1
clearly, these values satisfy −2<t<2.
Now, dx2d2y=dxd(dtdxdtdy) =dtd(dtdxdtdy)⋅dxdt =(dtdx)3dtdx⋅dt2d2y−dtdy⋅dt2d2x =(5t4−15t2−20)3(5t4−15t2−20)(24t−6)−(12t2−6t−18)(20t3−30t)
When t=−1, we have dx2d2y=(−30)3−30×−30<0,x=31 and y=14
when t=23, we have dx2d2y>0,x=32−1033 and y=4−69
Hence, the function y=f(x) attains a local maximum at (31,14) and a local minimum at (−1033/32,−69/4)