Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function. g(x) = begincases k√x+1 , text0 le x le 3 [2ex] mx+2, text3 < x le 5 endcases is differentiable, the value of k + m is
Q. If the function.
g
(
x
)
=
⎩
⎨
⎧
k
x
+
1
,
m
x
+
2
,
0
≤
x
≤
3
3 < x
≤
5
is differentiable, the value of
k
+
m
is
2609
248
JEE Main
JEE Main 2015
Continuity and Differentiability
Report Error
A
2
52%
B
5
16
25%
C
3
10
11%
D
4
11%
Solution:
g
(
x
)
=
{
k
x
+
1
m
x
+
2
x
∈
[
0
,
3
]
x
∈
(
3
,
5
]
g
(
x
)
diff
⇒
g
(
x
)
continuous
∴
g
(
3
−
)
=
g
(
3
+
)
⇒
k
4
=
3
m
+
2
⇒
2
k
=
3
m
+
2
……
(
1
)
Again
g
′
(
3
+
)
=
g
′
(
3
−
)
⇒
m
=
(
2
X
+
1
k
)
x
=
3
=
4
k
⇒
4
m
=
k
…
..
(
2
)
from
(
1
)
&
(
2
)
2
k
=
3
m
+
2
⇒
8
m
=
3
m
+
2
5
m
=
2
&
k
=
4
m
=
5
8
⇒
k
+
m
=
5
10
=
2