Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x) = begincases -x x < 1 a + cos-1 (x + b), ≤ x ≤ 2 endcases is differentiable at x = 1, then (a/b) is equal to :
Q. If the function
f
(
x
)
=
{
−
x
a
+
cos
−
1
(
x
+
b
)
,
x
<
1
≤
x
≤
2
is differentiable at
x
=
1
, then
b
a
is equal to :
1805
194
JEE Main
JEE Main 2016
Continuity and Differentiability
Report Error
A
2
π
−
2
21%
B
2
−
π
−
2
21%
C
2
π
+
2
40%
D
−
1
−
cos
−
1
(
2
)
19%
Solution:
f
(
x
)
=
⎩
⎨
⎧
−
x
a
+
co
s
−
1
(
x
+
b
)
x < 1
1
≤
x
≤
2
f (x) is continuous
⇒
x
→
1
−
lim
f
(
x
)
=
x
→
1
−
lim
a
+
co
s
−
1
(
x
+
b
)
=
f
(
x
)
⇒
−
1
=
a
+
co
s
−
1
(
1
+
3
)
co
s
−
1
(
1
+
b
)
=
−
1
−
a
....
(
1
)
f (x) is differentiate
⇒
LHD = RHD
⇒
−
1
=
1
−
(
1
+
b
)
2
−
1
⇒
1
−
(
1
+
b
)
2
=
1
⇒
b
=
−
1...
(
2
)
From
(
1
)
⇒
co
s
−
1
(
0
)
=
−
1
−
a
∴
−
1
−
a
=
2
π
a
=
−
1
−
2
π
a
=
2
−
π
−
2
...
(
3
)
∴
b
a
=
2
π
+
2