We have f(x)={x−4∣x−4∣,0,x=4x=4 Now, RHL x→4+limf(x)=h→0limf(4+h)=h→0lim4+h−4∣4+h−4∣=h→0limh∣h∣=h→0lim1=1 and LHL x→4−limf(x)=h→0limf(4−h)=h→0lim4−h+4∣4−h+4∣=h→0lim−h∣−h∣=h→0lim(−1)=−1 Since, LHL=RHL ie, x→4−1limf(x)=x→4+limf(x) Thus, limit does not exist.