Q.
If the function f(x)={x2, if x≤4ax, if x>4.
is continuous at x=4, then a=
1448
199
Continuity and Differentiability
Report Error
Solution:
L.H.L=x→4−limf(x)=x→4−limx2
Put x=4−h. as x→4,h→0 ∴L.H.L.=h→0lim(4−h)2=h→0lim(16+h2−8h)=16 R.H.L=x→4+limf(x)=x→4+limax
Put x=4+h. as x→4,h→0 ∴R.H.L.=h→0lima(4+h)=h→0lim4a+ah=4a
For the function to be continuous at x=4,L.H.L. =R.H.L. Therefore 16=4a which gives a=4.