Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x)= begincases ( log e(1-x+x2)+ loge(1+x+x2)/ sec x- cos x), x ∈((-π/2), (π/2))- 0 k x=0 endcases is continuous at x=0, then k is equal to :
Q. If the function
f
(
x
)
=
{
s
e
c
x
−
c
o
s
x
l
o
g
e
(
1
−
x
+
x
2
)
+
l
o
g
e
(
1
+
x
+
x
2
)
,
x
∈
(
2
−
π
,
2
π
)
−
{
0
}
k
x
=
0
is continuous at
x
=
0
, then
k
is equal to :
3380
134
JEE Main
JEE Main 2022
Continuity and Differentiability
Report Error
A
1
B
-1
C
e
D
0
Solution:
x
→
0
lim
1
−
cos
2
x
(
ln
(
1
+
x
2
+
x
4
)
)
cos
x
x
→
0
lim
(
x
2
s
i
n
2
x
)
x
2
(
x
2
+
x
4
l
n
(
1
+
x
2
+
x
4
)
)
x
2
(
1
+
x
2
)
cos
x
=
1
∴
k
=
1