Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x) = begincases k1(x-π)2-1, text x leπ [2ex] k2 cos x, text x > π endcases is twice differentiable, then the ordered pair (k1, k2) is equal to :
Q. If the function
f
(
x
)
=
⎩
⎨
⎧
k
1
(
x
−
π
)
2
−
1
,
k
2
cos
x
,
x
≤
π
x
>
π
is twice differentiable, then the ordered pair
(
k
1
,
k
2
)
is equal to :
6820
180
JEE Main
JEE Main 2020
Continuity and Differentiability
Report Error
A
(
2
1
,
1
)
51%
B
(
1
,
1
)
18%
C
(
2
1
,
−
1
)
21%
D
(
1
,
0
)
10%
Solution:
f
(
x
)
is continuous and differentiable
f
(
π
−
)
=
f
(
π
)
=
f
(
π
+
)
−
1
=
−
k
2
k
2
=
1
f
′
(
x
)
=
⎩
⎨
⎧
2
k
1
(
x
−
π
)
;
−
k
2
s
in
x
,;
x
≤
π
x
>
π
f
′
(
π
−
)
=
f
′
(
π
+
)
0
=
0
so, differentiable at
x
=
0
f
′′
(
x
)
=
⎩
⎨
⎧
2
k
1
;
−
k
2
cos
x
;
if
x
≤
π
if
x
>
π
f
′′
(
π
−
)
=
f
′′
(
π
+
)
2
k
1
=
k
2
k
1
=
2
1
(
k
1
,
k
2
)
=
(
2
1
,
1
)