Q.
If the function f(x) is differentiable at x=0, then find the value of (b2−2a+c6).
517
100
Continuity and Differentiability
Report Error
Answer: 48
Solution:
As f(x) is derivable at x=0, so f(x) is also continuous at x=0. ∴f(0+)=h→0Limhln(1−ch)(00)=h→0Lim−ch−c×ln(1−ch)=−c ⇒−c=2⇒c=−2………..(1) Now f′(0+)=h→0Limhhln(1+2h)−2=h→0Limh2ln(1+2h)−2h=h→0Limh2(2h−2(2h)2+……)−2h=−2
Now f′(0+)=h→0Limhhln(1+2h)−2=h→0Limh2ln(1+2h)−2h=h→0Limh2(2h−2(2h)2+……)−2h=−2
As f′(0−)=f′(0+), so b2+16−4a=−2 ⇒2a=b2+16 ∴b2−2a=−16
Hence (b2−2a+c6)=−16+64=48
(Using equation (1) and equation (2))