Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x)= beginarraycc-x x<1 a+ cos -1(x+b) 1 ≤ x ≤ 2 endarray. is differentiable at x=1 , then the value of (a/b) is equal to
Q. If the function
f
(
x
)
=
{
−
x
a
+
cos
−
1
(
x
+
b
)
x
<
1
1
≤
x
≤
2
is differentiable at
x
=
1
, then the value of
b
a
is equal to
1726
189
NTA Abhyas
NTA Abhyas 2020
Continuity and Differentiability
Report Error
A
2
π
+
2
47%
B
2
π
−
2
42%
C
2
−
π
−
2
8%
D
−
1
−
(
cos
)
−
1
(
2
)
3%
Solution:
f
(
x
)
=
{
−
x
a
+
cos
−
1
(
x
+
b
)
x
<
1
1
≤
x
≤
2
f
(
x
)
is continuous at
x
=
1
⇒
x
→
1
−
l
im
f
(
x
)
=
x
→
1
+
l
im
(
a
+
(
cos
)
−
1
(
x
+
b
)
)
=
f
(
1
)
⇒
−
1
=
a
+
(
cos
)
−
1
(
1
+
b
)
(
cos
)
−
1
(
1
+
b
)
=
−
1
−
a
........(i)
f
(
x
)
is differentiable at
x
=
1
⇒
LHD = RHD
⇒
−
1
=
1
−
(
1
+
b
)
2
−
1
⇒
1
−
(
1
+
b
)
2
=
1
⇒
b
=
−
1
......(ii)
From (i)
(
cos
)
−
1
(
0
)
=
−
1
−
a
∴
−
1
−
a
=
2
π
a
=
−
1
−
2
π
a
=
2
−
π
−
2
......(iii)
∴
b
a
=
2
π
+
2