Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x) = ax3 + bx2 + 11x - 6 satisfies the conditions of Rolle's theorem in [1, 3] and f' ( 2 + (1/√3) ) = 0 , then a + b =
Q. If the function
f
(
x
)
=
a
x
3
+
b
x
2
+
11
x
−
6
satisfies the conditions of Rolle's theorem in
[
1
,
3
]
and
f
′
(
2
+
3
1
)
=
0
, then
a
+
b
=
2246
208
AP EAMCET
AP EAMCET 2019
Report Error
A
-5
B
-3
C
4
D
7
Solution:
Given,
f
(
x
)
=
a
x
3
+
b
x
2
+
11
x
−
6
satisfies the Rolle's theorem in
⌊
1
,
3
⌋
.
So,
f
(
1
)
=
0
and
f
(
3
)
=
0
a
+
b
+
5
=
0
…
(i)
and
27
a
+
9
b
+
27
=
0
⇒
9
a
+
3
b
+
9
=
0
⇒
3
a
+
b
+
3
=
0
…
(ii)
From Eq. (i), we get
a
+
b
=
−
5