Given, f(x)=2x3−9ax2+12a2x+1 attains
maximum and minimum at p and q respectively. ∴f′(p)=0,f′(q)=0 f′′(p)<0 and f′′(q)>0
Nowf′(p)=0
and f′(q)=0 ⇒6p2−18ap+12a2=0
and 6q2−18aq+12a2=0 ⇒p2−3ap+2a2=0
and q2−3aq+2a2=0 ⇒p=a,2a,q=a,2a...(i)
Now,f′′(p)<0 ⇒12p−18a<0 ⇒p<23a...(ii)
and f′′(q)>0⇒12q−18a>0 ⇒q>23a...(iii)
and f′′(q)>0⇒12q−18a>0 ⇒′q>23a
From Eqs. (i), (ii) and (iii), we get p=a,q=2a
Now, p2=q ⇒a2=2a ⇒a=0,2
But for a=0,f(x)=2x3+1 which does not
attains a maximum or minimum for any value of x.
Hence, a=2.