f(x)=2x3−9ax2+12a2x+1 ∴f′(x)=6x2−18ax+12a2
and f′′(x)=12x−18a For max/min,6x2−18ax+12a2=0 ⇒x2−3ax+2a2=0 ⇒(x−a)(x−2a)=0 ⇒x=a or x=2a
Now, f′′(a)=12a−18a=−6a<0 and f′′(2a)=24a−18a=6a>0 ∴f(x) maximum at x = a and minimum at x=2a . ⇒p=a and q=2a
Given that, p2=q ⇒a2=2a ⇒a(a−2)=0 ∴a=2