Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x) = begincases (1-Cos x /x2) for x ≠ 0 k for x=0 endcases is continuous at x = 0, then the value of k is
Q. If the function
f
(
x
)
=
{
x
2
1
−
C
os
x
k
f
or
x
=
0
f
or
x
=
0
is continuous at
x
=
0
,
then the value of
k
is
3536
210
KCET
KCET 2007
Continuity and Differentiability
Report Error
A
0
30%
B
1
21%
C
-1
15%
D
1/2
33%
Solution:
Given,
f
(
x
)
=<
b
r
/
>
{
<
b
r
/
>
x
2
1
−
c
o
s
x
<
b
r
/
>
k
,
x
=
0
,
x
=
0
<
b
r
/
>
Since, f(x) is continuous
∴
x
→
0
lim
f
(
x
)
=
f
(
0
)
⇒
x
→
0
lim
x
2
1
−
cos
x
=
k
[using L’ Hospital’s rule]
⇒
2
1
x
→
0
lim
2
x
−
(
−
sin
x
)
=
k
⇒
2
1
.1
=
K
⇒
k
=
2
1