f(x) is odd, continuous function f(x)={x(x−sinx)−x(x−sinx),x≥0,x<0
for x≥0,f′(x)=2x−sinx−xcosx =x(1−cosx)+(x−sinx)≥0
for x<0,f(x)=−2x+sinx+xcosx =x(cosx−1)−(x−sinx)>0 as x<0 ⇒ So f(x) strictly increases in (−∞,∞) ⇒f(x) is one-one x→∞f(x)→∞ x→−∞f(x)→−∞.
So f(x) is onto