Q.
If the function f:R→R defined by f(x)=a+6x−8x2ax2+6x−8 is onto for a∈[m,n], then mn−3 is equal to.
1788
237
Relations and Functions - Part 2
Report Error
Solution:
Let y=a+6x−8x2ax2+6x−8.
We want y to be real for every real x ⇒(8y+a)x2−6yx+6x−8−ay=0 for x,y∈R…(1)
If 8y+a=0, i.e., y=−8a ⇒−6(8−a)x+6x−8−a(8−a)=0 ⇒43ax+6x−8+8a2=0 ⇒x(43a+6)=8−8a2 ⇒x=864−a2×3a+244 =6a+1264−a2∈R for a=−2 ∴ If a=−2 and y=−8a, then x∈R. ⇒ For a=−2 and y=41 ; x∈R⇒a=−2…(2)
If (8y+a)=0, then for real roots ' x′ of (1); Disc. ≥0∀y∈R ⇒(6−6y)2+4(8y+a)(8+ay)≥0∀y∈R ⇒(9+8a)y2+(a2+46)y+(9+8a)>0∀y∈R.
If 9+8a=0, then y≥0∀y∈R,
which is false, so, a=−89....(3)
Now for 9a+8a=0 ⇒(a2+46)2−4(9+8a)(9+8a)≤0 ⇒(a2+46)2−[2(9+8a)]2≤0 ⇒−2(9+8a)≤(a2+46)≤2(9+8a) ⇒a2+16a+64≤0 and a2−16a+28≤0 ⇒(a+8)2≤0 and (a−2)(a−14)≤0 ⇒a∈[2,14]. ∴ From(ii), (iii) and (iv), we have a∈[2,14]=[m,n] (given) ⇒m=2,n=14 ⇒mn−3=5