Q.
If the function f:R→A defined as f(x)=(tan)−1(1+x62x3) is a surjective function, then the set A is equal to
1484
216
NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions
Report Error
Solution:
Let, x3=t∈R
Let, y=1+t22t ⇒yt2−2t+y=0 ∵t∈R , hence D≥0 ⇒(−2)2−4y2≥0⇒y∈[−1,1] (tan)−1y∈[(tan)−1(−1),(tan)−1(1)]
Hence, the range of f(x)∈[−4π,4π]≡A