We have, f(x)=tan−1(sinx+cosx),x>0
Therefore, f′(x)=1+(sinx+cosx)21(cosx−sinx) =1+sin2x+cos2x+2sinxcosxcosx−sinx =2+sin2xcosx−sinx(∵sin2x+cos2x=1)
Note that 2+sin2x>0 for all x in (0,4π).
Therefore, f′(x)>0 if cosx−sinx>0 or f′(x)>0 if cosx>sinx or cotx>1
Now, cotx>1 if tanx<1, i.e., if 0<x<4π
Thus, f′(x)>0 in (0,4π)
Hence, f is strictly increasing function in (0,4π).