Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the expression (mx -1 +(1/x)) is always non-negative, then the minimum value of m must be
Q. If the expression
(
m
x
−
1
+
x
1
)
is always non-negative, then the minimum value of
m
must be
2826
174
Linear Inequalities
Report Error
A
−
2
1
17%
B
0
21%
C
4
1
55%
D
2
1
7%
Solution:
We know that,
a
x
2
+
b
x
+
c
≥
0
, if
a
>
0
and
b
2
−
4
a
c
≤
0
Now,
m
x
−
1
+
x
1
≥
0
⇒
x
m
x
2
−
x
+
1
≥
0
⇒
m
x
2
−
x
+
1
≥
0
and
x
>
0
Now,
m
x
2
−
x
+
1
≥
0
, if
m
>
0
and
1
−
4
m
≤
0
or if
m
>
0
and
m
≥
4
1
.
Thus, the minimum value of
m
is
4
1
.