Using tan−1α+tan−1β+tan−1γ=tan−1(1−∑αβα+β+γ−αβγ) In L.H.S. we get tan−1(1−c(ax)−(ax)(bx)−(bx)(c)c+ax+bx−c⋅ax⋅bx)=2π
where c=(x1−8x)
Now, 1=ax(x1−8x)+abx2+bx(x1−8x)⇒1=a−8ax2+abx2+b−8bx2∀x∈R 1=(a+b)+x2(ab−(8a+b)) ∴ On comparing, we get a+b=1.......(1)
and ab=8a+b=81......(2) (Using (1))
Now, a2+b2+2ab=1⇒a2+b2+41=1
Hence, 4(a2+b2)=3.