Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the expansion in powers of x of the function (1/(1-ax)(1-bx)) is a0+a1x+a2x2+a3x3+ ..... , then an is :
Q. If the expansion in powers of
x
of the function
(
1
−
a
x
)
(
1
−
b
x
)
1
is
a
0
+
a
1
x
+
a
2
x
2
+
a
3
x
3
+
.....
,
then
a
n
is :
2324
194
AIEEE
AIEEE 2006
Sequences and Series
Report Error
A
b
−
a
a
n
−
b
n
25%
B
b
−
a
a
n
+
1
−
b
n
+
1
12%
C
b
−
a
b
n
+
1
−
a
n
+
1
50%
D
b
−
a
b
n
−
a
n
12%
Solution:
∵
(
1
−
a
x
)
−
1
(
1
−
b
x
)
−
1
=
(
1
+
a
x
+
a
2
x
2
+
...
)
(
1
+
b
x
+
b
2
x
2
+
...
)
Hence
a
n
=
coefficient of
x
n
in
(
1
−
a
x
)
−
1
(
1
−
b
x
)
−
1
=
a
0
b
n
+
a
b
n
−
1
+
...
+
a
n
b
0
=
a
0
b
n
(
b
a
−
1
(
b
a
)
n
+
1
−
1
)
R
=
a
−
b
b
n
(
a
n
+
1
−
b
n
+
1
)
⋅
b
n
+
1
b
=
a
−
b
a
n
+
1
−
b
n
+
1