Q.
If the escape speed of a projectile on Earth's surface is 11.2kms−2 and a body is projected out with thrice this speed, then determine the speed of the body far away from the Earth
According to the principal of conservation of energy,
Initial kinetic energy + initial potential energy,
= final kinetic energy + final potential energy ⇒21mv2−RGMm=21mv′2+0 ⇒21mv′2=21mv2−RGMm ..... (i)
As consider, ve= escape velocity 21mve2=RGMm ........ (ii) ∴ From equation (i) and (ii), we get 21mv′2=21mv2−21mve2 ...... (iii) ⇒v′2=v2−ve2
NoW,
\left.\begin{array}{c}
v_{e}=11.2 km {\quad} s ^{-1} \\
v=3 v_{e}
\end{array}\right\} \ldots
.... (iv)
From equation (iii) and (iv), we get v′2=(3ve)2−ve2 v′2=9ve2−ve2=8ve2=8×(11.2)2 =8×(11.2)2 ⇒v′=8×(11.2)2=8×11.2 v′=2×1.414×11.2=31.68kms−1 ∴ Speed of the body far away from the Earth, v′=31.68kms−1=31.7kms−1