Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the equation x2 + y2 -10x + 21 = 0 has real roots x = a and y=β then
Q. If the equation
x
2
+
y
2
−
10
x
+
21
=
0
has real roots
x
=
a
and
y
=
β
then
2506
179
WBJEE
WBJEE 2016
Complex Numbers and Quadratic Equations
Report Error
A
3
≤
x
≤
7
0%
B
3
≤
y
≤
7
67%
C
−
2
≤
y
≤
2
33%
D
−
2
≤
x
≤
2
0%
Solution:
x
2
−
10
x
+
(
y
2
+
21
)
=
0
for real roots of
x
,
D
≥
0
100
−
4
(
y
2
+
21
)
≥
0
⇒
y
2
≤
4
⇒
−
2
≤
y
≤
2
(
C
)
also,
y
2
=
−
x
2
+
10
x
−
21
for real roots of
y
,
−
x
2
+
10
x
−
21
≥
0
⇒
(
x
−
7
)
(
x
−
3
)
≤
0
3
≤
x
≤
7
(
A
)