Let α and β are the roots of x2+ax+b=0
and the roots of x2−cx+d=0 are α4 and β4.
Now, α+β=−a,αβ=b…(i)
and α4+β4=c,α4β4=d…(ii)
From Eqs. (i) and (ii), b4=d and α4+β4=c (α2+β2)2−2(αβ)2=c ⇒[(α+β)2−2αβ]2−2(αβ)2=c ⇒(a2−2b)2−2b2=c ⇒2b2+c=(a2−2b)2 ⇒2b2+c=a4+4b2−4a2b ⇒2b2−c=4a2b−a4 ⇒2b2−c=a2(4b−a2)
and for equation x2−4bx+2b2−c=0 D=(4b)2−4(1)(2b2−c) =16b2−8b2+4c=8b2+4c =4(2b2+c)=4(a2−2b)2>0= real root
Now, f(0)=2b2−c=a2(4b−a2)<0 (∵a2>4b) = roots are opposite in sign