Q.
If the equation x2+2αx+α2−1=0 and x2+2βx+β2−1=0 have a common root (α=β) then the value of the expression 2α2−4αβ−∣α−β∣+∣α−β∣β2, is
242
100
Complex Numbers and Quadratic Equations
Report Error
Answer: 6
Solution:
Subtracting the two equation we get the common root as x=−21(α+β). Substituting this in any equation we get 41(α+β)2−22α(α+β)+α2−1=0 ⇒41(α+β)2−αβ−1=0 ⇒41[(α+β)2−4αβ]−1=0 ⇒41[(α−β)2]=1⇒∣α−β∣=2 now 2α2−4αβ−∣α−β∣+∣α−β∣β2 =2α2−4αβ+2β2−2 =2(α−β)2−2=2⋅4−2=8−2=6