Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the equation of the locus of a point equidistant from the points (a1, b1) and (a2, b2) is (a1 − b2) x + (a1 − b2) y + c = 0, then the value of ‘c’ is
Q. If the equation of the locus of a point equidistant from the points
(
a
1
,
b
1
)
and
(
a
2
,
b
2
)
is
(
a
1
−
b
2
)
x
+
(
a
1
−
b
2
)
y
+
c
=
0
, then the value of
‘
c
’
is
1995
257
AIEEE
AIEEE 2003
Straight Lines
Report Error
A
2
1
(
a
2
2
+
b
2
2
−
a
1
2
−
b
1
2
)
62%
B
a
1
2
+
a
2
2
−
b
1
2
−
b
2
2
9%
C
2
1
(
a
1
2
+
a
2
2
−
b
1
2
−
b
2
2
)
24%
D
a
1
2
+
b
2
2
−
a
2
2
−
b
2
2
5%
Solution:
Let
p
(
x
,
y
)
(
x
−
a
1
)
2
+
(
y
−
b
1
)
2
=
(
x
−
a
2
)
2
+
(
y
−
b
2
)
2
(
a
1
−
a
2
)
x
+
(
b
1
−
b
2
)
y
+
2
1
(
b
2
2
−
b
1
2
+
a
2
2
−
a
1
2
)
=
0.
Hence, (A) is the correct answer.