Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the equation of plane passing through the mirror image of a point (2,3,1) with respect to line (x+1/2)=(y-3/1)=(z+2/-1) and containing the line (x-2/3)=(1-y/2)=(z+1/1) is α x+β y+γ z=24, hen α+β+γ is equal to :
Q. If the equation of plane passing through the mirror image of a point
(
2
,
3
,
1
)
with respect to line
2
x
+
1
=
1
y
−
3
=
−
1
z
+
2
and containing the line
3
x
−
2
=
2
1
−
y
=
1
z
+
1
is
αx
+
β
y
+
γ
z
=
24
, hen
α
+
β
+
γ
is equal to :
1978
203
JEE Main
JEE Main 2021
Three Dimensional Geometry
Report Error
A
20
0%
B
19
33%
C
18
56%
D
21
11%
Solution:
Line
2
x
+
1
=
1
y
−
3
=
−
1
z
+
2
PM
=
(
2
λ
−
3
,
λ
,
−
λ
−
3
)
PM
⊥
(
2
i
^
+
j
^
−
k
^
)
4
λ
−
6
+
λ
+
λ
+
3
=
0
⇒
λ
=
2
1
∴
M
≡
(
0
,
2
7
,
2
−
5
)
∴
Reflection
(
−
2
,
4
,
−
6
)
Plane :
∣
∣
x
−
2
3
4
y
−
1
−
2
−
3
z
+
1
1
5
∣
∣
=
0
⇒
(
x
−
2
)
(
−
10
+
3
)
−
(
y
−
1
)
(
15
−
4
)
+
(
z
+
1
)
(
−
1
)
=
0
⇒
−
7
x
+
14
−
11
y
+
11
−
z
−
1
=
0
⇒
7
x
+
11
y
+
z
=
24
∴
α
=
7
,
β
=
11
,
γ
=
1
α
+
β
+
γ
=
19