Q.
If the equation f(x)=x3+3x2−9x+a=0∀a≤R has one distinct & two identical roots, then the total number of values of a equals
2173
214
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given f(x)=x3+3x2−9x+a=0…(i) ∴f′(x)=3x2+6xc−9=3[(x2+2x−3)],
here a>0,c<0 ∴D>0 ⇒f′(x)=α has two distinct roots α,β where (α=−3,β=1), therefore f(α)f(β)=0 gives the values of a.
Now f(−3)f(1)=0 ⇒(a−5)(a+27)=0 ∴a=5 or 27 ∴ Number of values =2