Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the eccentricity of the hyperbola (x2/(1 + sin θ )2)-(y2/(cos)2 â¡ θ )=1 is (2/√3), then the sum of all the possible values of θ is (where, θ ∈ (0 , π ) )
Q. If the eccentricity of the hyperbola
(
1
+
s
in
θ
)
2
x
2
−
(
cos
)
2
θ
y
2
=
1
is
3
2
,
then the sum of all the possible values of
θ
is (where,
θ
∈
(
0
,
π
)
)
1984
241
NTA Abhyas
NTA Abhyas 2020
Report Error
A
4
5
π
B
3
2
π
C
4
7
π
D
π
Solution:
e
2
=
1
+
(
1
+
s
i
n
θ
)
2
c
o
s
2
θ
=
3
4
⇒
(
1
+
s
i
n
θ
)
2
c
o
s
2
θ
=
3
1
⇒
[
1
+
s
i
n
θ
c
o
s
θ
]
2
=
3
1
⇒
[
1
+
c
o
s
(
2
π
−
θ
)
s
i
n
(
2
π
−
θ
)
]
2
=
3
1
⇒
tan
2
(
4
π
−
2
θ
)
=
3
1
4
π
−
2
θ
=
6
−
π
,
6
π
⇒
2
θ
=
4
π
−
6
π
,
4
π
+
6
π
θ
=
2
π
±
3
π
=
6
π
,
6
5
π
Hence, the required sum
=
π