Equation of the ellipse is 6x2+2y2=1.
Here a2=6 and b2=2⇒a=6 and b=2.
Let ' θ ' be the eccentric angle of the point so that the coordinates of the point are (6cosθ,2sinθ).
Since distance of this point from the centre C(0,0) is 2. ∴6cos2θ+2sin2θ=2 ⇒6cos2θ+2sin2θ=4 ⇒6cos2θ+2(1−cos2θ)=4 or 4cos2θ=2 ⇒cosθ=±21 ∴θ=4π,43π,45π,47π (∵0≤θ<2π)