Q.
If the displacement x and velocity v of a particle executing simple harmonic motion are related through the expression 4v2=25−x2, then its time period is
4v2=25−x2
Differentiating it both sides, we get 4(2vdtdv)=−2xdtdx or 4dtdv=−x(∵dtdx=v)
or 4a=−x or a=−41x(∵dtdv=a)
Comparing it with a=−ω2x, we get ω2=41 or ω=21 ∴ Time period, T=ω2π=1/22π=4π