Given that, l+m+n=0…(i) ⇒l+m=−n ⇒−(l+m)=n
and (l2+m2−n2=0…(ii)
Let us substitute per 'n' in Eq. (ii), we get ⇒l2+m2−l2−m2−2ml=0 ⇒2ml=0
i.e. either l=0 or m=0
Put m=0 in Eq. (i).
If m=0, then l=−n
Direction ratios (l,m,n)=(1,0,−1)
Put l=0 in Eq. (i), we get m=−n
Direction ratios (l,m,n)=(0,1,−1)
Here, b1⋅b2=(1,0,−1)⋅(0,1,−1)=0+0+1 ∴(b1)=02+12+12=2
and (b2)=02+12+12=2 ∴cosθ=(b1)(b2)b1⋅b2 ⇒2⋅21=21 ⇒θ=3π