Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the differential equation y d x-x d y+y2 cos x d x=0 satisfies the initial condition y((π/2))=1, then y (π) equals
Q. If the differential equation
y
d
x
−
x
d
y
+
y
2
cos
x
d
x
=
0
satisfies the initial condition
y
(
2
π
)
=
1
, then
y
(
π
)
equals
151
113
Differential Equations
Report Error
A
π
+
2
2
π
B
π
+
3
2
π
C
π
+
1
2
π
D
2
π
+
2
Solution:
y
2
y
d
x
−
x
d
y
+
cos
x
d
x
=
0
d
(
y
x
)
+
cos
x
d
x
=
0
y
x
+
sin
x
=
c
x
+
y
sin
x
=
cy
2
π
+
1
=
c
⇒
x
+
y
sin
x
=
(
2
π
+
1
)
y
π
=
(
2
π
+
1
)
y
⇒
y
=
π
+
2
2
π