Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the curve y=f(x) passing through the point (1,2) and satisfies the differential equation x d y+(y+x3 y2) d x=0, then
Q. If the curve
y
=
f
(
x
)
passing through the point
(
1
,
2
)
and satisfies the differential equation
x
d
y
+
(
y
+
x
3
y
2
)
d
x
=
0
, then
1341
216
Differential Equations
Report Error
A
x
y
=
2
1
B
x
3
y
=
2
C
x
y
1
=
2
D
None of these
Solution:
x
d
y
+
(
y
+
x
3
y
2
)
d
x
=
0
⇒
x
d
y
+
y
d
x
=
−
x
3
y
2
d
x
⇒
x
2
y
2
x
d
y
+
y
d
x
=
−
x
d
x
⇒
(
x
y
)
2
d
(
x
y
)
=
−
x
d
x
Integrating, we get
−
x
y
1
=
−
2
x
2
+
c
...
(1)
Using
(
1
,
2
)
in
(
1
)
, we get
−
2
1
=
−
2
1
+
c
⇒
c
=
0
∴
−
x
y
1
=
−
2
x
2
⇒
y
=
x
3
2
or
x
3
y
=
2
is the required curve.