Given that coordinates of the vertices of a triangle ABC are A(−1,3,2),B(2,3,5) and C(3,5,−2). DR′s of a line AB is (3,0,3)
and CA is (−4,−2,4) . ∴cosθ=a12+b12+c12a22+b22+c22a1a2+b1b2+c1c2 =9+0+916+4+163(−4)+0(−2)+3(4)=0
Alternative Solution:
Given vertices of a triangle are A(−1,3,2),B(2,3,5) and C(3,5,−2). ∴AB=(2+1)2+(3−3)2+(5−2)2 =9+0+9=32 BC=(3−2)2+(5−3)2+(−2−5)2 =1+4+49=36 CA=(3+1)2+(5−3)2+(−2−2)2 =16+4+16=6
Now, AB2+CA2=(32)2+(6)2 =18+36=54 =BC2 ∴ΔABC is right angled triangle, right angled at A . ∴∠A=90∘