Q.
If the complex number z for which arg(2z−8−6i3z−6−3i)=4π and ∣z−3+i∣=3 are (a−54)+i(1+52) and (a+54)+i(1−52) respectively, then ‘a’ must be equal to
3612
195
Complex Numbers and Quadratic Equations
Report Error
Solution:
As arg(2z−8−6i3z−6−3i)=4π ⇒arg[23(z−4−3iz−2−i)]=4π ⇒arg(z−4−3iz−2−i)=4π (∵arg(a+i0)=0,soarg(32)=0) ⇒arg[(x−4)+i(y−3)(x−2)+i(y−1)]=4π ⇒arg[(x−4)2+(y−3)2[(x−2)+i(y−1)][(x−4)−i(y−3)]]=4π ⇒arg[(x−4)2+(y−3)2[(x−2)(x−4)+(y−1)(y−3)]+(x−4)2+(y−3)2i[(y−1)(x−4)−(x−2)(y−3)]] =4π ⇒tan−1[(x−2)(x−4)+(y−1)(y−3)(y−1)(x−4)−(x−2)(y−3)]=4π ⇒(y−1)(x−4)−(x−2)(y−3)=(x−2)(x−4)+(y−1)(y−3) ⇒xy−x−4y+4−xy+2y+3x−6 =x2+y2−6x−4y+11 ⇒x2+y2−8x−2y+13=0...(i)
Again ∣z−3+i∣=3 ⇒(x−3)62+(y+1)2=9 ⇒x2+y2−6x+2y+1=0....(ii)
From (i) and (ii) we have x=6−2y, putting this
value in (i) we get 5y2−10y+1=0 ⇒y=1±52 and x=6−2y=4∓54
Thus (4∓54)+i(1±52)=(a∓54)+i(1±52) ⇒a=4