Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the coefficients of x-2 and x-4 in the expansion of (x(1/3) + (1/2x(1)3) )18 , (x> 0), are m and n respectively , then (m/n) is equal to :
Q. If the coefficients of
x
−
2
and
x
−
4
in the expansion of
(
x
3
1
+
2
x
3
1
1
)
18
,
(
x
>
0
)
, are
m
and
n
respectively , then
n
m
is equal to :
4314
229
JEE Main
JEE Main 2016
Binomial Theorem
Report Error
A
182
82%
B
5
4
8%
C
4
5
8%
D
27
3%
Solution:
T
r
+
1
=
18
C
r
(
x
1/3
)
18
−
r
(
2
x
1/3
1
)
r
=
18
C
r
(
2
1
)
r
x
3
18
−
2
r
For coefficient of
x
−
2
,
3
18
−
2
r
=
−
2
⇒
r
=
12
For coefficient of
x
−
4
,
3
18
−
2
r
=
−
4
⇒
r
=
15
⇒
n
m
=
18
C
15
(
2
1
)
15
18
C
12
(
2
1
)
12
18
C
3
18
C
8
(
2
)
3
=
182